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An expression for a diffusive flux of matter onto a surface of a solid or liquid 
particle is obtained for the case of an arbitrary ~~yrnrne~ic flowover, con- 
taming an arbitrary number of critical lines. This is a generalization of results 
obtained in [l, 21 where various type constraints were imposed on the field of 
flow. The formulas obtained make it possible to compute the: distribution of the 
concentration and mass exchange coefficients, from the data on the velocity 
field near the particle, Formulas for computing the diffusive mass exchange 
of a rigid spherical particle in a flow with a parabolic velocity profile, and of 
an ellipsoid of revolution in an uniform translational flow are given, 

In the course of the analysis we assume that the concentration of material dissolved 
in the fluid is constant at a distance from the particle, and that the material is fully ab- 
sorbed at its surface. In the spherical coordinate system tied to the particle, the equa- 
tion of convective diffusion and the boundary conditions, have the form 

c I?.=R(O) = 01 c f?w = co 
1 att 1 a9 

y =TGiTTaeB 7 
ve = -rsin8ar 

Here c is concentration, r = R (6) is the equation of the particle surface, V~ and z+, 
are the fluid velocity components and II is the stream function. Assuming that the tic- 
let number P = aU 1 D s 1 (D is the coefficient of diffusion, a is the characteristic 
dimension of the particle and u is the characteristic velocity of flow), we neglect the 
diffusive transfer of the material along the surface of the particle as compared with its 
transfer along the normal, In the general case of an axisymmetric laminar flow of a 
viscous fluid past a particle, the stream function near the surface of the particle can be 
written in the form 

I anpn 
**=(r - R(Q))?, (Qt, f, 03 = y am I r=Rfe) = (2) 

Here n = f corresponds to a drop, and n = 2 to a rigid particle. Using the variables 
11, 8, we obtain the following expression in the diffusive boundary layer from (1) and (2): 
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c 18=o = 0, c ll+m = co 

Here and henceforth we omit the subscript n from the functions 9 and f . 
The fluid flow along the trajectories originating at infinity and terminating at some 

points of the particle surface (these are the points at which the diffusive boundary layer 

is generated), is enriched with the diffusing material to .the maximum of its capacity. 

(Below we assume that the regions of closed circulation are absent). Therefore, to com- 

plete the formulation of the problem in the new variables we must assume that the con- 

centration at the inflow trajectories is equal to that at infinity. We must also remember 

that this condition is a limiting one and hold holds only P - 03. 

Let it consider in more detail the local geometry of the flow (in the diffusive boundary 
layer). The zeros of the function f (0) determine the critical points and separate the re- 
gions in which the stream function is of constant sign. Let us define the angles Bi- and 

0i+ so that f (Cl,-) = 0, (fe’ (0) ! sin O),=,,-< 0 and f (%+I = 0, (f~’ @) / sin e)e_ei+ > 0.. 
Then the cones 0 = ei- will represent thk inflow trajectories, and e = ei+ the outflow 
trajectories. The inflow and outflow trajectories must follow each other by virtue ofthe 
law of conservation of mass. Since the flow around the particle is axisymmetric, 6 = 0 

and B = rt are zeros of f (6). We assume for definiteness, that I&- = 0 represents an 
inflow trajectory, Expanding j (el+ + 6) into a series in e we find, that the stream func- 
tion is negative in the region 0 < 6 < 6? . In the same manner we find the signs of the 
stream function between any two roots of f (0). 

Let us consider the region 
( O~eeel+. i=l 

‘i= \ e;_,<e<ei+, i>l 

The additional boundary condition for the concentration in oi can be written in the form 

ci IQ+.- = co (4) 

We introduce into oi the following new variable: 

ti = - D~z sign f (e) An (e, e,-1, 

The problem (3), (4) 

(in oi) has the form 

of the distribution of concentration in the diffusive boundary layer 

C. 
1 +=o = 1 O* ‘i I/t$f+m = '0. ‘i Iti= = '0 

A solution of the problem (6) is given by 

ci =coK, $xp [- (_$)2Tn+l]dr 
0 

(7) 

2/JG, n=l 

(ypr (4/Q). n = 2 

Formula (7) together with (2) and (5) describes the distribution of concentration around 
the particle. The diffusive flux on the particle is 
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1 f (ep*~;l’(n*l) (e , e;) 1 1/~2 (e, + He’2 (0) 

R (0) 
The thickness of the diffusion boundary layer is given by the formula 

St = DC, I ii 

When 9 + e$ (f (0;t) = 0)) the quantity 8 -) 00. Near these angles the thickness ofthe 
diffusive boundary layer is not small compared with the ch~acter~tic dimension of the 
particle, Therefore the method used is inapplicable at the vicinity of 9F . From (5) 
and (8) we see that these regions diminish in size with increasing values of the F&let 
number, and their contribution towards the total diffusive flux on the particle ceases to 
be si~ific~t. The total flux on the particle surface is 

CJ+ 
i+1 

z= 
n 

iid0 = 2n 
Its 

sin eRz (e) ji (0) de = (9) 
i ai i eic 

I?+ it1 

N?l cs sineRa (f3)l f (0)*ln.4 ;l /.WQ (0, e,-) 
I 

l/R2 (0) + Re” (0) de 

i eif R 03 

We note that an expression for the total diffusive flux on a particle was obtained for the 
case of an arbitrary three-dimensional flow past a particle in [3].,using an auxilliary 
function which was obtained by solving a first order partial differential equation with 
coefficients depending on the geometry of the flow near the body. 

The formula (9) for the total diffusive flux simplifies considerably when the particle 
is nearly spherical 

R (0) = a (1 f % (e))t h 4 * (10) 

Substituting (10) into (9), expanding in h and taking (5) into account, we obtain 

%I 

sin QRz(e~ 1 f (0) I’[“/ An (e, Gi-) j--1ffn+1fd8 + 0 (h2) = (11) 

NT3 cs 1 ,A (e, 13;~) pntl)de’ (6, e,‘) de + o(??) = 
n 1 

i Bif 

where Ok < erc, (k = 1, . . ., N) are the roots of f (e)- 
Expressions for the spherical particles were obtained in [2; 4 - 91 for certain particu- 

lar cases. We shall use the formulas (9) - (11) to investigate two particular cases which 
complement the results of [2,4 - 91, 
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1”. Diffusion to the surface of a rigid spherical particle in an 
incident flow with a parabolic velocity profile. At large distances 
from the particle the velocity field has the form 

Here T denotes the curvature of the velocity profile on the axis of symmetry away from 
the particle and P.~ is the unit vector along the r-axis (in the Cartesian ( x, y, z) -COOT- 
dinate system). The field of flow serves, in this case, as the first approximation in the 
method of mirror images [lo] for a particle in a field of body forces moving along the 
axis of the tube (poiseuille flow), with the density of the particle such that its velocity 
is the same as the axial velocity of the fluid. 

e;= 0 

X 

Fig, 1 

For the field of flow we shall utilize the results obtained in [118 123 in the Stokes appro- 
ximation 

f (9) 2: - ?$Y sin2 0 (1 - g sin2 8) (12) 

From (12) we see that the inflow trajectories are represented by the ray 8,- = 0 and the 
cone 8,- = n - arc sin (4 / I/%), and the c&flow trajectories are Or+ = arc sin (4 / 
l/g) and 82 = ?I (see Fig. l), ul = (0 d C++), 6% = {EI,+ q 0 < e,+} (the signs of the 
@ream function are indicated in Fig. 1). The concen~ation ~~bu~on is given by the 
formulas (Z), (5) and (7) with n = 2 and fi (8) = a. Using (11) we obtain the following 
expression for the total flux on the surface of the sphere : 
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Here F and E ace complete elliptic integrals of the first and second kind, respectively. 
Performing the computations, we obtain 

I,, = 6.01c,aZD*~‘T”a ( 13) 

The same expression was obtained in [9] for the total diffusive flux on a particle in a 
shear flow with the shear coefficient of a = 0.0503aT. 

2’. Diffusion to the surface of a rigid ellipsoid of revolution 
with a small excentcicity in a uniform Stokes flow. Weconsidecthe 

Case when e = a i b - 1, ) e 1 4 1, where a and b ace the axes of the ellipsoid and a 
is the symmetry axis oriented along the flow. 

The field of flow is obtained by expanding in e the solution given in [13] 

f (6) = J/, sin2 8 [I + 4e (CO9 9 - 1/5)1 

Applying the formula (11) we obtain the following result with the accuracy to within 

0 (e”) : I = I* (I-0.044e) 

Here I* denotes the total flux on a sphere of volume equal to that of the ellipsoid of 
revolution. We see that if the major axis of the ellipsoid is directed with (against) the 

flow, then its total diffusive flux is smaller (greater) than that for a sphere of the same 

volume, This is caused by the fact that the ellipsoid has a smaller (larger) velocity gca- 
dient at the surface than the sphere. 

It should be stressed that the results obtained for a drop (n = 1) can also be used in 

the case of an inviscid or filtration flow past a particle. 
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The stresses and displacements in a long anisotropic cylinder with longitudinal 

cavities are determined. The problem reduces to seeking an analytic function 
of a complex variable which is determined in a domain obtained by an affine 

transformation from the domain of the cylinder cross section. Boundary condi- 
tions and a general representation are obtained for the function mentioned. 

A long cylinder attenuated by longitudinal cavities, fabricated from a homogeneous 
linearly-elastic material having a plane of elastic symmetry perpendicular to the cylin- 

der axis at each point is considered. The cylinder is clamped to a rigid mass without 

tension along the outer surface. Axial tangential forces which do not vary along the cy- 
linder axis are applied to the surfaces of the cavities. Moreover, axial gravitational for- 
ces act on the cylinder. 

We introduce a rectangular q/z -coordinate system with the. z-axis directed down- 
ward along the cylinder axis. Let S be a domain occupied by a cross section in the 

zy-plane, Lo and LI, are its outer and inner contours (k = 1, 2, . . ., N), y is the spe- 
cific gravity of the material, and ok (s) is the intensity of the external forces applied 

to the k-th cavity. 

Following Moskvitin [l] and using the Hooke’s law equation in the form written in [2], 
we find an equation for the axial displacement function 

(1) 

Here Ah4, b,, A,, are elastic constants of the materiaL We represent the general solu- 
tion of (1) as in [2] Aa4w = w1 + 2Re Q, (zl) 

Here wr is some particular solution of the inhomogeneous equation Dwu, = --y. and (D(zl) 
is an analytic function of the auxiliary complex variable zr = I, + iyr, where 

Xl = x + ay, Yl = BY (2) 


